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Overview

OVERVIEW

This chapter highlights the technical progress in various subfields of 

AI, including computer vision, language, speech, concept learning, and 

theorem proving. It uses a combination of quantitative measurements, 

such as common benchmarks and prize challenges, and qualitative 

insights from academic papers to showcase the developments in state-of-

the-art AI technologies. 

While technological advances allow AI systems to be deployed more 

widely and easily than ever, concerns about the use of AI are also growing, 

particularly when it comes to issues such as algorithmic bias. The 

emergence of new AI capabilities such as being able to synthesize images 

and videos also poses ethical challenges. 

CHAPTER 2:
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CHAPTER HIGHLIGHTS

• �Generative everything: AI systems can now compose text, audio, and images to a sufficiently high 
standard that humans have a hard time telling the difference between synthetic and non-synthetic 
outputs for some constrained applications of the technology. That promises to generate a tremendous 
range of downstream applications of AI for both socially useful and less useful purposes. It is 
also causing researchers to invest in technologies for detecting generative models; the DeepFake 
Detection Challenge data indicates how well computers can distinguish between different outputs. 

• �The industrialization of computer vision: Computer vision has seen immense progress in the past 
decade, primarily due to the use of machine learning techniques (specifically deep learning). New 
data shows that computer vision is industrializing: Performance is starting to flatten on some of the 
largest benchmarks, suggesting that the community needs to develop and agree on harder ones 
that further test performance. Meanwhile, companies are investing increasingly large amounts 
of computational resources to train computer vision systems at a faster rate than ever before. 
Meanwhile, technologies for use in deployed systems—like object-detection frameworks for 
analysis of still frames from videos—are maturing rapidly, indicating further AI deployment. 

• �Natural Language Processing (NLP) outruns its evaluation metrics: Rapid progress in NLP has 
yielded AI systems with significantly improved language capabilities that have started to have a 
meaningful economic impact on the world. Google and Microsoft have both deployed the BERT 
language model into their search engines, while other large language models have been developed 
by companies ranging from Microsoft to OpenAI. Progress in NLP has been so swift that technical 
advances have started to outpace the benchmarks to test for them. This can be seen in the rapid 
emergence of systems that obtain human level performance on SuperGLUE, an NLP evaluation suite 
developed in response to earlier NLP progress overshooting the capabilities being assessed by GLUE. 

• �New analyses on reasoning: Most measures of technical problems show for each time point the 
performance of the best system at that time on a fixed benchmark. New analyses developed for 
the AI Index offer metrics that allow for an evolving benchmark, and for the attribution to individual 
systems of credit for a share of the overall performance of a group of systems over time. These 
are applied to two symbolic reasoning problems, Automated Theorem Proving and Satisfiability of 
Boolean formulas.

• �Machine learning is changing the game in healthcare and biology: The landscape of the healthcare 
and biology industries has evolved substantially with the adoption of machine learning. DeepMind’s 
AlphaFold applied deep learning technique to make a significant breakthrough in the decades-long 
biology challenge of protein folding. Scientists use ML models to learn representations of chemical 
molecules for more effective chemical synthesis planning. PostEra, an AI startup used ML-based 
techniques to accelerate COVID-related drug discovery during the pandemic.

CHAPTER
HIGHLIGHTS
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Introduced in the 1960s, the field of computer vision has seen significant 

progress and in recent years has started to reach human levels of 

performance on some restricted visual tasks. Common computer 

vision tasks include object recognition, pose estimation, and semantic 

segmentation. The maturation of computer vision technology has unlocked 

a range of applications: self-driving cars, medical image analysis, consumer 

applications (e.g., Google Photos), security applications (e.g., surveillance, 

satellite imagery analysis), industrial applications (e.g., detecting defective 

parts in manufacturing and assembly), and others. 

COMPUTER
VISION

CHAPTER 2:
TECHNICAL 
PERFORMANCE
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IMAGE CLASSIFICATION
In the 2010s, the field of image recognition and 
classification began to switch from classical AI techniques 
to ones based on machine learning and, specifically, 
deep learning. Since then, image recognition has shifted 
from being an expensive, domain-specific technology to 
being one that is more affordable and applicable to more 
areas—primarily due to advancements in the underlying 
technology (algorithms, compute hardware, and the 
utilization of larger datasets). 

ImageNet
Created by computer scientists from Stanford University 
and Princeton University in 2009, ImageNet is a dataset 
of over 14 million images across 200 classes that expands 
and improves the data available for researchers to train 
AI algorithms. In 2012, researchers from the University of 
Toronto used techniques based on deep learning to set 
a new state of the art in the ImageNet Large Scale Visual 
Recognition Challenge. 

Since then, deep learning techniques have ruled 
the competition leaderboards—several widely used 
techniques have debuted in ImageNet competition 
entries. In 2015, a team from Microsoft Research said it 
had surpassed human-level performance on the image 
classification task1 via the use of “residual networks”—an 
innovation that subsequently proliferated into other AI 
systems. Even after the end of the competition in 2017, 
researchers continue to use the ImageNet dataset to test 
and develop computer vision applications. 

The image classification task of the ImageNet Challenge 
asks machines to assign a class label to an image based 
on the main object in the image. The following graphs 
explore the evolution of the top-performing ImageNet 
systems over time, as well as how algorithmic and 
infrastructure advances have allowed researchers to 

increase the efficiency of training image recognition 
systems and reduce the absolute time it takes to train 
high-performing ones. 

ImageNet: Top-1 Accuracy
Top-1 accuracy tests for how well an AI system can 
assign the correct label to an image, specifically whether 
its single most highly probable prediction (out of all 
possible labels) is the same as the target label. In recent 
years, researchers have started to focus on improving 
performance on ImageNet by pre-training their systems 
on extra training data, for instance photos from 
Instagram or other social media sources. By pre-training 
on these datasets, they’re able to more effectively use 
ImageNet data, which further improves performance. 
Figure 2.1.1 shows that recent systems with extra training 
data make 1 error out of every 10 tries on top-1 accuracy, 
versus 4 errors out of every 10 tries in December 2012. 
The model from the Google Brain team achieved 90.2% 
on top-1 accuracy in January 2021. 

2.1 COMPUTER VISION—IMAGE

2.1 COMPUTER 
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1 Though it is worth noting that the human baseline for this metric comes from a single Stanford graduate student who took roughly the same test as the AI systems took.

Image recognition has 
shifted from being an 
expensive, domain-specific 
technology to being one 
that is more affordable 
and applicable to more 
areas—primarily due 
to advancements in the 
underlying technology.

http://www.image-net.org/
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://arxiv.org/abs/1502.01852
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ImageNet: Top-5 Accuracy
Top-5 accuracy asks whether the correct label is in at least the classifier’s top five predictions. Figure 2.1.2 shows that 
the error rate has improved from around 85% in 2013 to almost 99% in 2020.2
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2 Note: For data on human error, a human was shown 500 images and then was asked to annotate 1,500 test images; their error rate was 5.1% for Top-5 classification. This is a very rough baseline, but it 
gives us a sense of human performance on this task. 
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ImageNet: Training Time
Along with measuring the raw improvement in accuracy 
over time, it is useful to evaluate how long it takes 
to train image classifiers on ImageNet to a standard 
performance level as it sheds light on advances in the 
underlying computational infrastructure for large-scale 
AI training. This is important to measure because the 
faster you can train a system, the more quickly you 
can evaluate it and update it with new data. Therefore, 
the faster ImageNet systems can be trained, the more 
productive organizations can become at developing and 
deploying AI systems. Imagine the difference between 
waiting a few seconds for a system to train versus waiting 
a few hours, and what that difference means for the type 
and volume of ideas researchers explore and how risky 
they might be. 

What follows are the results from MLPerf, a competition 
run by the MLCommons organization that challenges 
entrants to train an ImageNet network using a common 
(residual network) architecture, and then ranks systems 
according to the absolute “wall clock” time it takes them 
to train a system.3 

As shown in Figure 2.1.3, the training time on ImageNet 
has fallen from 6.2 minutes (December 2018) to 47 
seconds (July 2020). At the same time, the amount of 
hardware used to achieve these results has increased 
dramatically; frontier systems have been dominated by 
the use of “accelerator” chips, starting with GPUs in the 
2018 results, and transitioning to Google’s TPUs for the 
best-in-class results from 2019 and 2020. 

Distribution of Training Time: MLPerf does not just 
show the state of the art for each competition period; 
it also makes available all the data behind each 
entry in each competition cycle. This, in turn, reveals 
the distribution of training times for each period 
(Figure 2.1.3). (Note that in each MLPerf competition, 
competitors typically submit multiple entries that use 
different permutations of hardware.)

Figure 2.1.4 shows that in the past couple of years, 
training times have shortened, as has the variance 
between MLPerf entries. At the same time, competitors 
have started to use larger and larger numbers of 
accelerator chips to speed training times. This is in line 
with broader trends in AI development, as large-scale 
training becomes better understood, with a higher 
degree of shared best practices and infrastructure.

2.1 COMPUTER 
VISION—IMAGE
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3 The next MLPerf update is planned for June 2021.

Imagine the difference 
between waiting a few 
seconds for a system to 
train versus waiting a 
few hours, and what that 
difference means for the 
type and volume of ideas 
researchers explore and 
how risky they might be. 

https://mlcommons.org/en/
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ImageNet: Training Costs
How much does it cost to train a contemporary image-
recognition system? The answer, according to tests run by 
the Stanford DAWNBench team, is a few dollars in 2020, 
down by around 150 times from costs in 2017 (Figure 

2.1.5). To put this in perspective, what cost one entrant 
around USD 1,100 to do in October 2017 now costs about 
USD 7.43. This represents progress in algorithm design as 
well as a drop in the costs of cloud-computing resources. 
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Figure 2.1.5
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Harder Tests Beyond ImageNet
In spite of the progress in performance on ImageNet, current computer vision systems are still not 
perfect. To better study their limitations, researchers have in recent years started to develop more 
challenging image classification benchmarks. But since ImageNet is already a large dataset, which 
requires a nontrivial amount of resources to use, it does not intuitively make sense to simply expand the 
resolution of the images in ImageNet or the absolute size of the dataset—as either action would further 
increase the cost to researchers when training systems on ImageNet. Instead, people have tried to figure 
out new ways to test the robustness of image classifiers by creating custom datasets, many of which are 
compatible with ImageNet (and are typically smaller). These include

IMAGENET ADVERSARIAL: 
This is a dataset of images 
similar to those found in 
ImageNet but incorporating 
natural confounders (e.g., a 
butterfly sitting on a carpet with 
a similar texture to the butterfly), 
and images that are persistently 
misclassified by contemporary 
systems. These images “cause 
consistent classification 
mistakes due to scene 
complications encountered 
in the long tail of scene 
configurations and by exploiting 
classifier blind spots,” according 
to the researchers. Therefore, 
making progress on ImageNet 
Adversarial could improve the 
ability of models to generalize. 

IMAGENET-C:  
This is a dataset of common 
ImageNet images with 75 visual 
corruptions applied to them 
(e.g., changes in brightness, 
contrast, pixelations, fog 
effects, etc.). By testing systems 
against this, researchers can 
provide even more information 
about the generalization 
capabilities of these models. 

IMAGENET-RENDITION:  
This tests generalization by 
seeing how well ImageNet-
trained models can categorize 
30,000 illustrations of 200 
ImageNet classes. Since 
ImageNet is designed to be built 
out of photos, generalization 
here indicates that systems 
have learned something more 
subtle about what they’re trying 
to classify, because they’re able 
to “understand” the relationship 
between illustrations and the 
photographed images they’ve 
been trained on. 

What is the Time Table for Tracking This Data? As these benchmarks are relatively new, the plan is to 
wait a couple of years for the community to test a range of systems against them, which will generate 
the temporal information necessary to make graphs tracking progress overtime. 

2.1 COMPUTER 
VISION—IMAGE
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https://arxiv.org/abs/1907.07174
https://arxiv.org/abs/1903.12261
https://arxiv.org/abs/2006.16241


11CHAPTER 2 PRE VIE W

Artificial Intelligence
Index Report 2021

IMAGE GENERATION
Image generation is the task of generating images 
that look indistinguishable from “real” images. Image 
generation systems have a variety of uses, ranging from 
augmenting search capabilities (it is easier to search for 
a specific image if you can generate other images like 
it) to serving as an aid for other generative uses (e.g., 
editing images, creating content for specific purposes, 
generating multiple variations of a single image to help 
designers brainstorm, and so on). 

In recent years, image generation progress has 
accelerated as a consequence of the continued 
improvement in deep learning–based algorithms, as well 
as the use of increased computation and larger datasets.

STL-10: Fréchet Inception Distance (FID) Score
One way to measure progress in image generation is via a 
technique called Fréchet Inception Distance (FID), which 
roughly correlates to the difference between how a given 
AI system “thinks” about a synthetic image versus a real 
image, where a real image has a score of 0 and synthetic 
images that look similar have scores that approach 0. 

Figure 2.1.6 shows the progress of generative models 
over the past two years at generating convincing 
synthetic images in the STL-10 dataset, which is designed 
to test how effective systems are at generating images 
and gleaning other information about them. 

2.1 COMPUTER 
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Figure 2.1.6

https://cs.stanford.edu/~acoates/stl10/
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FID Versus Real Life
FID has drawbacks as an evaluation technique—
specifically, it assesses progress on image generation 
via quantitative metrics that use data from the model 
itself, rather than other evaluation techniques. Another 
approach is using teams of humans to evaluate the 
outputs of these models; for instance, the Human eYe 
Perceptual Evaluation (HYPE) method tries to judge image 
quality by showing synthetically generated images to 
humans and using their qualitative ratings to drive the 
evaluation methodology. This approach is more expensive 
and slower to run than typical evaluations, but it may 
become more important as generative models get better. 

Qualitative Examples: To get a sense of progress, you 
can look at the evolution in the quality of synthetically 
generated images over time. In Figure 2.1.7, you can 
see the best-in-class examples of synthetic images of 
human faces, ordered over time. By 2018, performance of 
this task had become sufficiently good that it is difficult 
for humans to easily model further progress (though it 
is possible to train machine learning systems to spot 
fakes, it is becoming more challenging). This provides a 
visceral example of recent progress in this domain and 
underscores the need for new evaluation methods to 
gauge future progress. In addition, in recent years people 
have turned to doing generative modeling on a broader 
range of categories than just images of people’s faces, 
which is another way to test for generalization.

Figure 2.1.7

GAN PROGRESS ON FACE GENERATION

2014 2015 2016
2017

2018

2020

Source: Goodfellow et al., 2014; Radford et al., 2016; Liu & Tuzel, 2016; Karras et al., 2018; Karras et al., 2019; Goodfellow, 2019; Karras et al., 2020; AI Index, 2021
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DEEPFAKE DE TECTION
Advances in image synthesis have created new 
opportunities as well as threats. For instance, in recent 
years, researchers have harnessed breakthroughs 
in synthetic imagery to create AI systems that can 
generate synthetic images of human faces, then 
superimpose those faces onto the faces of other people 
in photographs or movies. People call this application 
of generative technology a “deepfake.” Malicious uses 
of deepfakes include misinformation and the creation 
of (predominantly misogynistic) pornography. To try 
to combat this, researchers are developing deepfake-
detection technologies.

Deepfake Detection Challenge (DFDC)
Created in September 2019 by Facebook, the Deepfake 
Detection Challenge (DFDC) measures progress on 
deepfake-detection technology. A two-part challenge, 
DFDC asks participants to train and test their models from 
a public dataset of around 100,000 clips. The submissions 
are scored on log loss, a classification metric based on 
probabilities. A smaller log loss means a more accurate 
prediction of deepfake videos. According to Figure 
2.1.8, log loss dropped by around 0.5 as the challenge 
progressed between December 2019 and March 2020. 
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Figure 2.1.8

https://www.kaggle.com/c/deepfake-detection-challenge/
https://www.kaggle.com/c/deepfake-detection-challenge/
https://www.kaggle.com/dansbecker/what-is-log-loss
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HUMAN POSE ESTIMATION
Human pose estimation is the problem of estimating the 
positions of human body parts or joints (wrists, elbows, 
etc.) from a single image. Human pose estimation is a 
classic “omni-use” AI capability. Systems that are good at 
this task can be used for a range of applications, such as 
creating augmented reality applications for the fashion 
industry, analyzing behaviors gleaned from physical 
body analysis in crowds, surveilling people for specific 
behaviors, aiding with analysis of live sporting and 
athletic events, mapping the movements of a person to a 
virtual avatar, and so on. 

Common Objects in Context (COCO): 
Keypoint Detection Challenge
Common Objects in Context (COCO) is a large-scale 
dataset for object detection, segmentation, and 
captioning with 330,000 images and 1.5 million object 
instances. Its Keypoint Detection Challenge requires 
machines to simultaneously detect an object or a person 
and localize their body keypoints—points in the image 
that stand out, such as a person’s elbows, knees, and 
other joints. The task evaluates algorithms based on 
average precision (AP), a metric that can be used to 
measure the accuracy of object detectors. Figure 2.1.9 
shows that the accuracy of algorithms in this task has 
improved by roughly 33% in the past four years, with the 
latest machine scoring 80.8% on average precision.
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Common Objects in Context (COCO): 
DensePose Challenge
DensePose, or dense human pose estimation, is the task 
of extracting a 3D mesh model of a human body from a 
2D image. After open-sourcing a system called DensePose 
in 2018, Facebook built DensePose-COCO, a large-scale 
dataset of image-to-surface correspondences annotated 
on 50,000 COCO images. Since then, DensePose has 
become a canonical benchmark dataset.

The COCO DensePose Challenge involves tasks of 
simultaneously detecting people, segmenting their 

bodies, and estimating the correspondences between 
image pixels that belong to a human body and a 
template 3D model. The average precision is calculated 
based on the geodesic point similarity (GPS) metric, 
a correspondence matching score that measures the 
geodesic distances between the estimated points and 
the true location of the body points on the image. The 
accuracy has grown from 56% in 2018 to 72% in 2019 
(Figure 2.1.10).

2.1 COMPUTER 
VISION—IMAGE

CHAPTER 2:
TECHNICAL 
PERFORMANCE

03/2018 05/2018 07/2018 09/2018 11/2018 01/2019 03/2019 05/2019 07/2019 09/2019

50%

55%

60%

65%

70%

75%

A
ve

ra
ge

 P
re

ci
si

on
 (A

P
)

72%

COCO DENSEPOSE CHALLENGE: AVERAGE PRECISION
Source: arXiv & CodaLab, 2020 | Chart: 2021 AI Index Report

Figure 2.1.10

https://cocodataset.org/index.htm#densepose-eval
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SEMANTIC SEGMENTATION
Semantic segmentation is the task of classifying each 
pixel in an image to a particular label, such as person, 
cat, etc. Where image classification tries to assign a 
label to the entire image, semantic segmentation tries to 
isolate the distinct entities and objects in a given image, 
allowing for more fine-grained identification. Semantic 
segmentation is a basic input technology for self-driving 
cars (identifying and isolating objects on roads), image 
analysis, medical applications, and more.  

Cityscapes
Cityscapes is a large-scale dataset of diverse urban street 
scenes across 50 different cities recorded during the 
daytime over several months (during spring, summer, and 
fall) of the year. The dataset contains 5,000 images with 
high-quality, pixel-level annotations and 20,000 weekly 
labeled ones. Semantic scene understanding, especially 

in the urban space, is crucial to the environmental 
perception of autonomous vehicles. Cityscapes is useful 
for training deep neural networks to understand the urban 
environment. 

One Cityscapes task that focuses on semantic 
segmentation is the pixel-level semantic labeling task. 
This task requires an algorithm to predict the per-pixel 
semantic labeling of the image, partitioning an image 
into different categories, like cars, buses, people, trees, 
and roads. Participants are evaluated based on the 
intersection-over-union (IoU) metric. A higher IoU score 
means a better segmentation accuracy. Between 2014 and 
2020, the mean IoU increased by 35% (Figure 2.1.11). There 
was a significant boost to progress in 2016 and 2017 when 
people started using residual networks in these systems. 
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Figure 2.1.11

https://towardsdatascience.com/metrics-to-evaluate-your-semantic-segmentation-model-6bcb99639aa2
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EMBODIED VISION
The performance data so far shows that computer vision 
systems have advanced tremendously in recent years. 
Object recognition, semantic segmentation, and human 
pose estimation, among others, have now achieved 
significant levels of performance. Note that these visual 
tasks are somewhat passive or disembodied. That 
is, they can operate on images or videos taken from 
camera systems that are not physically able to interact 
with the surrounding environment. As a consequence 
of the continuous improvement in those passive tasks, 
researchers have now started to develop more advanced 
AI systems that can be interactive or embodied—that 
is, systems that can physically interact with and modify 
the surrounding environment in which they operate: for 
example, a robot that can visually survey a new building 
and autonomously navigate it, or a robot that can learn 
to assemble pieces by watching visual demonstrations 
instead of being manually programmed for this.

Progress in this area is currently driven by the 
development of sophisticated simulation environments, 
where researchers can deploy robots in virtual spaces, 
simulate what their cameras would see and capture, and 
develop AI algorithms for navigation, object search, and 
object grasping, among other interactive tasks. Because 
of the relatively early nature of this field, there are few 
standardized metrics to measure progress. Instead, here 
are  brief highlights of some of the available simulators, 
their year of release, and any other significant feature.

• �Thor (AI2, 2017) focuses on sequential abstract 
reasoning with predefined “magic” actions that are 
applicable to objects.

• �Gibson (Stanford, 2018) focuses on visual navigation 
in photorealistic environments obtained with 3D 
scanners. 

• �iGibson (Stanford, 2019) focuses on full interactivity 
in large realistic scenes mapped from real houses and 
made actable: navigation + manipulation (known in 
robotics as “mobile manipulation”).

• �AI Habitat (Facebook, 2019) focuses on visual 
navigation with an emphasis on much faster 
execution, enabling more computationally expensive 
approaches.

• �ThreeDWorld (MIT and Stanford, 2020) focuses on 
photorealistic environments through game engines, 
as well as adds simulation of flexible materials, fluids, 
and sounds.

• �SEAN-EP (Yale, 2020) is a human-robot interaction 
environment with simulated virtual humans that 
enables the collection of remote demonstrations from 
humans via a web browser.

• �Robosuite (Stanford and UT Austin, 2020) is a modular 
simulation framework and benchmark for robot 
learning.
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https://ai2thor.allenai.org
http://gibsonenv.stanford.edu
http://svl.stanford.edu/igibson/
https://aihabitat.org/
http://www.threedworld.org/
https://sean.interactive-machines.com/#sean-ep
https://robosuite.ai/
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Video analysis is the task of making inferences over sequential image frames, sometimes with the inclusion of an audio feed. 
Though many AI tasks rely on single-image inferences, a growing body of applications require computer vision machines to reason 
about videos. For instance, identifying a specific dance move benefits from seeing a variety of frames connected in a temporal 
sequence; the same is true of making inferences about an individual seen moving through a crowd, or a machine carrying out a 
sequence of movements over time.

ACTIVIT Y RECOGNITION
The task of activity recognition is to identify various 
activities from video clips. It has many important 
everyday applications, including surveillance by video 
cameras and autonomous navigation of robots. Research 
on video understanding is still focused on short events, 
such as videos that are a few seconds long. Longer-term 
video understanding is slowly gaining traction.

ActivityNet
Introduced in 2015, ActivityNet is a large-scale video 
benchmark for human-activity understanding. The 
benchmark tests how well algorithms can label and 
categorize human behaviors in videos. By improving 
performance on tasks like ActivityNet, AI researchers are 
developing systems that can categorize more complex 

behaviors than those that can be contained in a single 
image, like characterizing the behavior of pedestrians on 
a self-driving car’s video feed or providing better labeling 
of specific movements in sporting events. 

ActivityNet: Temporal Action Localization Task
The temporal action localization task in the ActivityNet 
challenge asks machines to detect time segments in a 
600-hour, untrimmed video sequence that contains several 
activities. Evaluation on this task focuses on (1) localization: 
how well can the system localize the interval with the precise 
start time and end time; and (2) recognition: how well can 
the system recognize the activity and classify it into the 
correct category (such as throwing, climbing, walking the 
dog, etc.). Figure 2.2.1 shows that the highest mean average 
precision of the temporal action localization task among 
submissions has grown by 140% in the last five years. 
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Figure 2.2.1

http://activity-net.org/challenges/2020/tasks/anet_localization.html
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2019

2020

ActivityNet: Hardest Activity
Figure 2.2.2 shows the hardest activities of the temporal 
action location task in 2020 and how their mean average 
precision compares with the 2019 result. Drinking coffee 
remained the hardest activity in 2020. Rock-paper-

scissors, though still the 10th hardest activity, saw the 
greatest improvement among all activities, increasing by 
129.2%—from 6.6% in 2019 to 15.22% in 2020.
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OB JECT DE TECTION
Object detection is the task of identifying a given object 
in an image. Frequently, image classification and image 
detection are coupled together in deployed systems. 
One way to get a proxy measure for the improvement 
in deployed object recognition systems is to study the 
advancement of widely used object detection systems.

You Only Look Once (YOLO)
You Only Look Once (YOLO) is a widely used open source 
system for object detection, so its progress has been 
included on a standard task on YOLO variants to give a 
sense of how research percolates into widely used open 
source tools. YOLO has gone through multiple iterations 

since it was first published in 2015. Over time, YOLO has 
been optimized along two constraints: performance and 
inference latency, as shown in Figure 2.2.3. What this 
means, specifically, is that by measuring YOLO, one can 
measure the advancement of systems that might not 
have the best absolute performance but are designed 
around real-world needs, like low-latency inference 
over video streams. Therefore, YOLO systems might 
not always contain the absolute best performance as 
defined in the research literature, but they will represent 
good performance when faced with trade-offs such as 
inference time. 
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FACE DE TECTION AND 
RECOGNITION
Facial detection and recognition is one of the use-cases 
for AI that has a sizable commercial market and has 
generated significant interest from governments and 
militaries. Therefore, progress in this category gives 
us a sense of the rate of advancement in economically 
significant parts of AI development. 

National Institute of Standards and Technology 
(NIST) Face Recognition Vendor Test (FRVT)
The Face Recognition Vendor Tests (FRVT) by the 
National Institute of Standards and Technology (NIST) 
provide independent evaluations of commercially 
available and prototype face recognition technologies. 
FRVT measures the performance of automated face 

recognition technologies used for a wide range of civil 
and governmental tasks (primarily in law enforcement 
and homeland security), including verification of visa 
photos, mug shot images, and child abuse images. 

Figure 2.2.4 shows the results of the top-performing 1:1 
algorithms measured on false non-match rate (FNMR) 
across several different datasets. FNMR refers to the 
rate at which the algorithm fails when attempting to 
match the image with the individual. Facial recognition 
technologies on mug-shot-type and visa photos have 
improved the most significantly in the past four years, 
falling from error rates of close to 50% to a fraction of a 
percent in 2020.4
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Figure 2.2.4

4 You can view details and examples of various datasets on periodically updated FRVT 1:1 verification reports.

https://pages.nist.gov/frvt/html/frvt11.html#_overview_
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Natural language processing (NLP) involves teaching machines to interpret, classify, manipulate, and generate language. 
From the early use of handwritten rules and statistical techniques to the recent adoption of generative models and deep 
learning, NLP has become an integral part of our lives, with applications in text generation, machine translation, question 
answering, and other tasks. 

In recent years, advances in natural language processing 
technology have led to significant changes in large-scale 
systems that billions of people access. For instance, in 
late 2019, Google started to deploy its BERT algorithm 
into its search engine, leading to what the company said 
was a significant improvement in its in-house quality 
metrics. Microsoft followed suit, announcing later in 2019 
that it was using BERT to augment its Bing search engine. 

ENGLISH LANGUAGE 
UNDERSTANDING BENCHMARKS

SuperGLUE
Launched in May 2019, SuperGLUE is a single-metric 
benchmark that evaluates the performance of a model on 

a series of language understanding tasks on established 
datasets. SuperGLUE replaced the prior GLUE benchmark 
(introduced in 2018) with more challenging and diverse tasks. 

The SuperGLUE score is calculated by averaging scores on 
a set of  tasks. Microsoft’s DeBERTa model now tops the 
SuperGLUE leaderboard, with a score of 90.3, compared 
with an average score of 89.8 for SuperGLUE’s “human 
baselines.” This does not mean that AI systems have 
surpassed human performance on all SuperGLUE tasks, but 
it does mean that the average performance across the entire 
suite has exceeded that of a human baseline. The rapid pace 
of progress (Figure 2.3.1) suggests that SuperGLUE may 
need to be made more challenging or replaced by harder 
tests in the future, just as SuperGLUE replaced GLUE. 

2.3 LANGUAGE
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Figure 2.3.1

https://super.gluebenchmark.com/
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SQuAD
The Stanford Question Answering Dataset, or SQuAD, 
is a reading-comprehension benchmark that measures 
how accurately a NLP model can provide short answers 
to a series of questions pertaining to a small article 
of text. The SQuAD test makers established a human 
performance benchmark by having a group of people 
read Wikipedia articles on a variety of topics and then 
answer multiple-choice questions about those articles. 
Models are given the same task and are evaluated on 
the F1 score, or the average overlap between the model 
prediction and the correct answer. Higher scores indicate 
better performance.

Two years after the introduction of the original SQuAD, 
in 2016, SQuAD 2.0 was developed once the initial 
benchmark revealed increasingly fast performances by 

the participants (mirroring the trend seen in GLUE and 
SuperGLUE). SQuAD 2.0 combines the 100,000 questions 
in SQuAD 1.1 with over 50,000 unanswerable questions 
written by crowdworkers to resemble answerable ones. 
The objective is to test how well systems can answer 
questions and to determine when systems know that no 
answer exists.

As Figure 2.3.2 shows, the F1 score for SQuAD 1.1 
improved from 67.75 in August 2016 to surpass human 
performance of 91.22 in September 2018—a 25-month 
period—whereas SQuAD 2.0 took just 10 months to beat 
human performance (from 66.3 in May 2018 to 89.47 
in March 2019). In 2020, the most advanced models of 
SQuAD 1.1 and SQuAD 2.0 reached the F1 scores of 95.38 
and 93.01, respectively. 
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COMMERCIAL MACHINE 
TRANSLATION (MT)
Machine translation (MT), the subfield of computational 
linguistics that investigates the use of software to 
translate text or speech from one language to another, 
has seen significant improvement due to advances in 
machine learning. Recent progress in MT has prompted 
developers to shift from symbolic approaches toward 
ones that use both statistical and deep learning 
approaches. 

Number of Commercially Available MT 
Systems
The trend in the number of commercially available 
systems speaks to the significant growth of commercial 
machine translation technology and its rapid adoption 
in the commercial marketplace. In 2020, the number of 
commercially available independent cloud MT systems 
with pre-trained models increased to 28, from 8 in 
2017, according to Intento, a startup that evaluates 
commercially available MT services (Figure 2.3.3). 
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https://inten.to/?utm_campaign=Inten.to%20Main%20Page%20Registrations&utm_source=Report%20landing%20page
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GPT-3
In July 2020, OpenAI unveiled GPT-3, the largest known 
dense language model. GPT-3 has 175 billion parameters 
and was trained on 570 gigabytes of text. For comparison, 
its predecessor, GPT-2, was over 100 times smaller, at 
1.5 billion parameters. This increase in scale leads to 
surprising behavior: GPT-3 is able to perform tasks it 
was not explicitly trained on with zero to few training 
examples (referred to as zero-shot and few-shot learning, 
respectively). This behavior was mostly absent in the 
much smaller GPT-2. Furthermore, for some tasks (but 
not all; e.g., SuperGLUE and SQuAD2), GPT-3 outperforms 
state-of-the-art models that were explicitly trained to 
solve those tasks with far more training examples.

Figure 2.3.4, adapted from the GPT-3 paper, 
demonstrates the impact of scale (in terms of model 
parameters) on task accuracy (higher is better) in zero-, 
one-, and few-shot learning regimes. Each point on the 
curve corresponds to an average performance accuracy, 
aggregated across 42 accuracy-oriented benchmarks. As 
model size increases, average accuracy in all task regimes 
increases accordingly. Few-shot learning accuracy 
increases more rapidly with scale, compared with zero-
shot learning, which suggests that large models can 
perform surprisingly well given minimal context.
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Figure 2.3.4

https://arxiv.org/pdf/2005.14165.pdf
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That a single model can achieve state-of-the-art or close 
to state-of-the-art performance in limited-training-data 
regimes is impressive. Most models until now have been 
designed for a single task, and thus can be evaluated 
effectively by a single metric. In light of GPT-3, we 
anticipate novel benchmarks that are explicitly designed 
to evaluate zero- to few-shot learning performance 
for language models. This will not be straightforward. 
Developers are increasingly finding model novel 
capabilities (e.g., the ability to generate a website from a 
text description) that will be difficult to define, let alone 
measure performance on. Nevertheless, the AI Index is 
committed to tracking performance in this new context 
as it evolves.

Despite its impressive capabilities, GPT-3 has several 
shortcomings, many of which are outlined in the original 
paper. For example, it can generate racist, sexist, and 
otherwise biased text. Furthermore, GPT-3 (and other 
language models) can generate unpredictable and 
factually inaccurate text. Techniques for controlling 
and “steering” such outputs to better align with human 
values are nascent but promising. GPT-3 is also expensive 
to train, which means that only a limited number of 
organizations with abundant resources can currently 
afford to develop and deploy such models. Finally, GPT-3 
has an unusually large number of uses, from chatbots 
to computer code generation to search. Future users are 
likely to discover more applications, both good and bad, 
making it difficult to identify the range of possible uses 
and forecast their impact on society. 

Nevertheless, research to address harmful outputs and 
uses is ongoing at several universities and industrial 
research labs, including OpenAI. For more details, refer 
to work by Bender and Gebru et al. and the proceedings 
from a recent Stanford Institute for Human-Centered 
Artificial Intelligence (HAI) workshop (which included 
researchers from OpenAI), “Understanding the 
Capabilities, Limitations, and Societal Impact of Large 
Language Models.”
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https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf
https://arxiv.org/abs/2102.02503
https://arxiv.org/abs/2102.02503
https://arxiv.org/abs/2102.02503
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VISION AND LANGUAGE 
REASONING
Vision and language reasoning is a research area that 
addresses how well machines jointly reason about visual 
and text data. 

Visual Question Answering (VQA) Challenge
The VQA challenge, introduced in 2015, requires 
machines to provide an accurate natural language 
answer, given an image and a natural language question 
about the image based on a public dataset. Figure 2.4.1 

shows that the accuracy has grown by almost 40% since 
its first installment at the International Conference on 
Computer Vision (ICCV) in 2015. The highest accuracy of 
the 2020 challenge is 76.4%. This achievement is closer to 
the human baseline of 80.8% accuracy and represents a 
1.1% absolute increase in performance from the top 2019 
algorithm.

2.4 LANGUAGE REASONING SKILLS
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Figure 2.4.1

https://visualqa.org/
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Visual Commonsense Reasoning (VCR) Task
The Visual Commonsense Reasoning (VCR) task, 
first introduced in 2018, asks machines to answer a 
challenging question about a given image and justify 
that answer with reasoning (whereas VQA just requests 
an answer). The VCR dataset contains 290,000 pairs of 
multiple-choice questions, answers, and rationales, as 
well as over 110,000 images from movie scenes. 

The main evaluation mode for the VCR task is the Q->AR 

score, requiring machines to first choose the right answer 
(A) to a question (Q) among four answer choices (Q->A) 
and then select the correct rationale (R) among four 
rationale choices based on the answer. A higher score is 
better, and human performance on this task is measured 
by a QA->R score of 85. The best-performing machine has 
improved on the Q->AR score from 44 in 2018 to 70.5 in 
2020 (Figure 2.4.2), which represents a 60.2% increase in 
performance from the top competitor in 2019.
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Figure 2.4.2

https://visualcommonsense.com/
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A major aspect of AI research is the analysis and synthesis of human speech conveyed via audio data. In recent years, 
machine learning approaches have drastically improved performance across a range of tasks.

SPEECH RECOGNITION
Speech recognition, or automatic speech recognition (ASR), 
is the process that enables machines to recognize spoken 
words and convert them to text. Since IBM introduced its 
first speech recognition technology in 1962, the technology 
has evolved with voice-driven applications such as 
Amazon Alexa, Google Home, and Apple Siri becoming 
increasingly prevalent. The flexibility and predictive power 
of deep neural networks, in particular, has allowed speech 
recognition to become more accessible. 

Transcribe Speech: LibriSpeech
LibriSpeech is a dataset, first introduced in 2015, made up 
of 1,000 hours of speech from audiobooks. It has become 
widely used for the development and testing of speech 
recognition technologies. In recent years, neural-network-
based AI systems have started to dramatically improve 
performance on LibriSpeech, lowering the word error rate 
(WER; 0% is optimal performance) to around 2% (Figure 
2.5.1a and Figure 2.5.1b).

Developers can test out their systems on LibriSpeech in 
two ways:

	 • �Test Clean determines how well their systems can 
transcribe speech from a higher-quality subset of the 
LibriSpeech dataset. This test gives clues about how 
well AI systems might perform in more controlled 
environments.

	 • �Test Other determines how systems can deal with 
lower-quality parts of the LibriSpeech dataset. This 
test suggests how well AI systems might perform in 
noisier (and perhaps more realistic) environments.

There has been substantial progress recently on both 
datasets, with an important trend emerging in the past two 
years: The gap between performance on Test Clean and Test 
Other has started to close significantly for frontier systems, 

shifting from an absolute performance difference of more 
than seven points in late 2015 to a difference of less than 
one point in 2020. This reveals dramatic improvements in 
the robustness of ASR systems over time and suggests that 
we might be saturating performance on LibriSpeech—in 
other words, harder tests may be needed.  

2.5 SPEECH
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Speaker Recognition: VoxCeleb
Speaker identification tests how well machine learning 
systems can attribute speech to a particular person. The 
VoxCeleb dataset, first introduced in 2017, contains over 
a million utterances from 6,000 distinct speakers, and its 
associated speaker-identification task tests the error rate 
for systems that try to attribute a particular utterance to 
a particular speaker. A better (lower) score in VoxCeleb 
provides a proxy for how well a machine can distinguish 
one voice among 6,000. Evaluation method for VoxCeleb is 
Equal Error Rate (EER), a commonly used metric for identity 
verification systems. EER provides a measure for both the 
false positive rate (assigning a label incorrectly) and the 
false negative rate (failing to assign a correct label).

In recent years, progress on this task has come from 
hybrid systems—systems that fuse contemporary deep 
learning approaches with more structured algorithms, 
developed by the broader speech-processing community. 
As of 2020, error rates have dropped such that computers 
have a very high (99.4%) ability to attribute utterances to 
a given speaker (Figure 2.5.2) 

Still, obstacles remain: These systems face challenges 
processing speakers with different accents and in 
differentiating among speakers when confronted with a 
large dataset (it is harder to identify one person in a set 
of a billion people than to pick out one person across the 
VoxCeleb training set of 6,000).

https://www.robots.ox.ac.uk/~vgg/data/voxceleb/
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The Race Gap in 
Speech Recognition 
Technology
Researchers from Stanford University 
found that state-of-the-art ASR 
systems exhibited significant 
racial and gender disparity—they 
misunderstand Black speakers 
twice as often as white speakers. 
In the paper, titled “Racial 
Disparities in Automated Speech 
Recognition,” authors ran thousands 
of audio snippets of white and 
Black speakers, transcribed from 
interviews conducted with 42 white 
speakers and 73 Black speakers, 
through leading speech-to-text 
services by Amazon, Apple, Google, 
IBM, and Microsoft. 

The results suggest that, on average, 
systems made 19 errors every 
hundred words for white speakers 
and 35 errors for Black speakers—
nearly twice as many. Moreover, 
the systems performed particularly 
poorly for Black men, with more than 
40 errors for every hundred words 
(Figure 2.5.3). The breakdown by 
ASR systems shows that gaps are 
similar across companies (Figure 
2.5.4). This research emphasizes 
the importance of addressing the 
bias of AI technologies and ensuring 
equity as they become mature and 
deployed. 
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https://www.pnas.org/content/117/14/7684
https://www.pnas.org/content/117/14/7684
https://www.pnas.org/content/117/14/7684
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This section measures progress on symbolic (or logical) reasoning in AI, which is the process of drawing conclusions from 
sets of assumptions. We consider two major reasoning problems, Boolean Satisfiability (SAT) and Automated Theorem 
Proving (ATP). Each has real-world applications (e.g., circuit design, scheduling, software verification, etc.) and poses 
significant measurement challenges. The SAT analysis shows how to assign credit for the overall improvement in the field to 
individual systems over time. The ATP analysis shows how to measure performance given an evolving test set.  

All analyses below are original to this report. Lars Kotthoff wrote the text and performed the analysis for the SAT section. 
Geoff Sutcliffe, Christian Suttner, and Raymond Perrault wrote the text and performed the analysis for the ATP section. This 
work had not been published at the time of writing; consequently, a more academically rigorous version of this section (with 
references, more precise details, and further context) is included in the Appendix.  

BOOLEAN SATISFIABILITY PROBLEM
Analysis and text by Lars Kotthoff

The SAT problem considers whether there is an 
assignment of values to a set of Boolean variables, joined 
by logical connectives, that makes the logical formula it 
represents true. Many real-world problems, such as circuit 
design, automated theorem proving, and scheduling, can 
be represented and solved efficiently as SAT problems. 

The performance of the top-, median-, and bottom-ranked 
SAT solvers was examined from each of the last five years 
(2016–2020) of the SAT Competition, which has been 
running for almost 20 years, to measure a snapshot of 
state-of-the-art performance. In particular, all 15 solvers 
were run on all 400 SAT instances from the main track of 
the 2020 competition and the time (in CPU seconds) it took 
to solve all instances was measured.5 Critically, each solver 
was run on the same hardware, such that comparisons 
across years would not be confounded by improvements 
in hardware efficiency over time.

While performance of the best solvers from 2016 to 
2018 did not change significantly, large improvements 
are evident in 2019 and 2020 (Figure 2.6.1). These 
improvements affect not only the best solvers but also 
their competitors. The performance of the median-ranked 
solver in 2019 is better than that of the top-ranked solvers 

in all previous years, and the performance of the median-
ranked solver in 2020 is almost on par with the top-ranked 
solver in 2019.

Performance improvements in SAT—and more generally, 
hard computational AI problems—come primarily 
from two areas of algorithmic improvements: novel 
techniques and more efficient implementations of existing 
techniques. Typically, performance improvements arise 
primarily from novel techniques. However, more efficient 
implementations (which can arise with performance 
improvements in hardware over time) can also increase 
performance. Therefore, it is difficult to assess whether 
performance improvements arise primarily from novel 
techniques or more efficient implementations. To address 
this problem, the temporal Shapley value, which is the 
contribution of an individual system to state-of-the-art 
performance over time, was measured (see the Appendix 
for more details).

Figure 2.6.2 shows the temporal Shapley value 
contributions of each solver for the different competition 
years. Note that the contributions of the solvers in 2016 
are highest because there is no previous state-of-the-art 
to compare them with in our evaluation and that their 
contribution is not discounted. 

2.6 REASONING
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5 Acknowledgments: The Advanced Research Computing Center at the University of Wyoming provided resources for gathering the computational data. Austin Stephen performed the computational 
experiments.

http://www.satcompetition.org/
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According to the temporal Shapley value, in 2020 the best 
solver contributes significantly more than the median- 
and bottom-ranked solvers do. The 2020 winner, Kissat, 
has the highest temporal Shapley value of any solvers 
excluding the first year. The changes it incorporates, 
compared with those of previous solvers, are almost 
exclusively more efficient data structures and algorithms; 
Kissat thus impressively demonstrates the impact of 
good engineering on the state-of-the-art performance.

By contrast, smallsat, the solver with the largest 
temporal Shapley value (but not the winner) in 2019, 
focuses on improved heuristics instead of a more efficient 
implementation. The same is true of Candy, the solver 
with the largest temporal Shapley value in 2017, whose 
main novelty is to analyze the structure of a SAT instance 
and apply heuristics based on this analysis. Interestingly, 
neither solver ranked first in their respective years; both 
were outperformed by versions of the Maple solver, 
which nevertheless contributes less to the state of the 
art. This indicates that incremental improvements, 
while not necessarily exciting, are important for good 
performance in practice. 

Based on our limited analysis of the field, novel 
techniques and more efficient implementations have 
made equally important contributions to the state 
of the art in SAT solving. Incremental improvements 
of established solvers are as likely to result in top 
performance as more substantial improvements of 
solvers without a long track record.

AUTOMATED THEOREM PROVING 
(ATP)
Analysis and text by Christian Suttner, Geoff Sutcliffe, and 
Raymond Perrault

Automated Theorem Proving (ATP) concerns the 
development and use of systems that automate sound 
reasoning, or the derivation of conclusions that follow 
inevitably from facts. ATP systems are at the heart 
of many computational tasks, including software 
verification. The TPTP problem library was used to 
evaluate the performance of ATP algorithms from 1997 to 
2020 and to measure the fraction of problems solved by 
any system over time (see the Appendix for more details).

The analysis extends to the whole TPTP (over 23,000 
problems) in addition to four salient subsets (each 
ranging between 500 and 5,500 problems)—clause 
normal form (CNF), first-order form (FOF), monomorphic 
typed first-order form (TF0) with arithmetic, and 
monomorphic typed higher-order form (TH0) theorems—
all including the use of the equality operator.

Figure 2.6.3 shows that the fraction of problems solved 
climbs consistently, indicating progress in the field. The 
noticeable progress from 2008 to 2013 included strong 
progress in the FOF, TF0, and TH0 subsets. In FOF, which 
has been used in many domains (e.g., mathematics, 
real-world knowledge, software verification), there were 
significant improvements in the Vampire, E, and iProver 
systems. In TF0 (primarily used for solving problems in 
mathematics and computer science) and TH0 (useful in 
subtle and complex topics such as philosophy and logic), 
there was rapid initial progress as systems developed 
techniques that solved “low-hanging fruit” problems. In 
2014–2015, there was another burst of progress in TF0, 
as the Vampire system became capable of processing 
TF0 problems. It is noteworthy that, since 2015, progress 
has continued but slowed, with no indication of rapid 
advances or breakthroughs in the last few years.
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http://www.tptp.org/
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While this analysis demonstrates progress in ATP, there 
is obviously room for much more. Two keys to solve 
ATP problems are axiom selection (given a large set of 
axioms, only some of which are needed for a proof of 
the conjecture, how to select an adequate subset of 
the axioms); and search choice (at each stage of an ATP 
system’s search for a solution, which logical formula(e) 
should be selected for attention). The latter issue has 
been at the forefront of ATP research since its inception 

in the 1960s, while the former has become increasingly 
important as large bodies of knowledge are encoded 
for ATP. In the last decade, there has been growing use 
of machine learning approaches to addressing these 
two key challenges (e.g., in the MaLARea and Enigma 
ATP systems). Recent results from the CADE ATP System 
Competition (CASC) have shown that the emergence of 
machine learning is a potential game-changer for ATP.
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http://www.tptp.org/CASC


36CHAPTER 2 PRE VIE W

Artificial Intelligence
Index Report 2021

2.7 HEALTHCARE AND BIOLOGY

Standard 500k BenchmarkHuman Prediction Benchmark

0%

25%

50%

75%

100%

To
p-

1 
A

cc
ur

ac
y

76.5% Best Human76.5% Best Human76.5% Best Human76.5% Best Human76.5% Best Human

GNN-based | Graph Edits

GNN-based | Graph EditsSeq2seq with attn |
SMILES

Transformer | SMILESTransformer | SMILES

CHEMICAL SYNTHESIS PLANS BENCHMARK: TOP-1 TEST ACCURACY
Source: Schwaller, 2020 | Chart: 2021 AI Index Report

12/2017 06/2018 11/2018 08/2019 11/2020

Human Prediction Benchmark Standard 500k Benchmark

In collaboration with the “State of AI Report”

MOLECULAR SYNTHESIS
Text by Nathan Benaich and Philippe Schwaller

Over the last 25 years, the pharmaceutical industry has 
shifted from developing drugs from natural sources (e.g., 
plants) to conducting large-scale screens with chemically 
synthesized molecules. Machine learning allows scientists 
to determine what potential drugs are worth evaluating in 
the lab and the most effective way of synthesizing them. 
Various ML models can learn representations of chemical 
molecules for the purposes of chemical synthesis planning. 

A way to approach chemical synthesis planning is to 
represent chemical reactions with a text notation and 
cast the task as a machine translation problem. Recent 
work since 2018 makes use of the transformer architecture 
trained on large datasets of single-step reactions. Later 
work in 2020 approached model forward prediction and 
retrosynthesis as a sequence of graph edits, where the 
predicted molecules were built from scratch.

Notably, these approaches offer an avenue to rapidly 
sweep through a list of candidate drug-like molecules in 
silico and output synthesizability scores and synthesis 
plans. This enables medicinal chemists to prioritize 
candidates for empirical validation and could ultimately 
let the pharmaceutical industry mine the vast chemical 
space to unearth novel drugs to benefit patients.

Test Set Accuracy for Forward Chemical 
Synthesis Planning 
Figure 2.7.1 shows the top-1 accuracy of models 
benchmarked on a freely available dataset of one million 
reactions in the U.S. patents.6 Top-1 accuracy means that 
the product predicted by the model with the highest 
likelihood corresponds to the one that was reported 
in the ground truth. Data suggests that progress in 
chemical synthesis planning has seen steady growth in 
the last three years, as the accuracy grew by 15.6% in 
2020 from 2017. The latest molecular transformer scored 
92% on top-1 accuracy in November 2020.
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Figure 2.7.1

6 Acknowledgment: Philippe Schwaller at IBM Research–Europe and the University of Bern provided instructions and resources for gathering and analyzing the data.

https://www.stateof.ai/
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COVID-19 AND DRUG DISCOVERY
AI-powered drug discovery has gone open source to 
combat the COVID-19 pandemic. COVID Moonshot is a 
crowdsourced initiative joined by over 500 international 
scientists to accelerate the development of a COVID-19 
antiviral. The consortium of scientists submits their 
molecular designs pro bono, with no claims. PostEra, 
an AI startup, uses machine learning and computational 
tools to assess how easily compounds can be made 
using the submissions from the scientists and generates 
synthetic routes. After the first week, Moonshot received 
over 2,000 submissions, and PostEra designed synthetic 
routes in under 48 hours. Human chemists would have 
taken three to four weeks to accomplish the same task. 

Figure 2.7.2 shows the accumulated number of 
submissions by scientists over time. Moonshot received 
over 10,000 submissions from 365 contributors around 
the world in just four months. Toward the end of August 
2020, the crowdsourcing had served its purpose, and the 
emphasis moved to optimize the lead compounds and set 
up for animal testing. As of February 2021, Moonshot aims 
to nominate a clinical candidate by the end of March.

Figure 2.7.2

https://covid.postera.ai/covid
https://postera.ai/
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ALPHAFOLD AND PROTEIN FOLDING
The protein folding problem, a grand challenge in 
structural biology, considers how to determine the three-
dimensional structure of proteins (essential components 
of life) from their one-dimensional representations 
(sequences of amino acids7). A solution to this problem 
can have wide ranging applications—from better 
understanding the cellular basis of life, to fueling drug 
discovery, to curing diseases, to engineering de-novo 
proteins for industrial tasks, and more. 

In recent years, machine learning-based approaches 
have started to make a meaningful difference on the 
protein folding problem. Most notably, DeepMind’s 
AlphaFold debuted in 2018 at the Critical Assessment 
of Protein Structure (CASP) competition, a biennial 
competition to foster and measure progress on protein 
folding. At CASP, competing teams are given amino acid 
sequences and tasked to predict the three-dimensional 
structures of the corresponding proteins, the latter of 

which are determined through laborious and expensive 
experimental methods (e.g., nuclear magnetic resonance 
spectroscopy, X-ray crystallography, cryo-electron 
microscopy, etc.) and unknown to the competitors. 
Performance on CASP is commonly measured by the 
Global Distance Test (GDT) score, a number between 0 
and 100, which measures the similarity between two 
protein structures. A higher GDT score is better. 

Figure 2.7.3, adapted from the DeepMind blog post, 
shows the median GDT scores of the best team on some 
of the harder types of proteins to predict (the ‘free-
modelling’ category of proteins) at CASP over the last 
14 years. In the past, winning algorithms were typically 
based on physics based models; however, in the last two 
competitions, Deepmind’s AlphaFold and AlphaFold 2 
algorithms achieved winning scores through the partial 
incorporation of deep learning techniques. 

Figure 2.7.3

7 Currently most protein folding algorithms leverage multiple sequence alignments—many copies of a protein sequence representing the same protein across evolution—rather than just a 
single sequence.

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
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EXPERT HIGHLIGHTS
This year, the AI Index asked AI experts to share their thoughts on the most significant technical AI breakthroughs 
in 2020. Here’s a summary of their responses, along with a couple of individual highlights. 

What was the single most impressive AI advancement in 2020?
	 • �The two most mentioned systems by a significant margin were AlphaFold (DeepMind), a model for molecular 

assay, and GPT-3 (OpenAI), a generative text model.

What single trend will define AI in 2021?
	 • �Experts predict that more advances will be built by using pretrained models. For instance, GPT-3 is a 

large NLP model that can subsequently be fine-tuned for excellent performance on specific, narrow tasks. 
Similarly, 2020 saw various computer vision advancements built on top of models pretrained on very large 
image datasets.

What aspect of AI technical progress, deployment, and development are you most excited to 
see in 2021?
	 • �“It’s interesting to note the dominance of the Transformers architecture, which started for machine 

translation but has become the de facto neural network architecture. More broadly, whereas NLP trailed 
vision in terms of adoption of deep learning, now it seems like advances in NLP are also driving vision.” —
Percy Liang, Stanford University

	 • �“The incredible recent advancements in language generation have had a profound effect on the fields of NLP 
and machine learning, rendering formerly difficult research challenges and datasets suddenly useless while 
simultaneously encouraging new research efforts into the fascinating emergent capabilities (and important 
failings) of these complex new models.” —Carissa Schoenick, Allen Institute of AI Research

EXPERT 
HIGHLIGHTS
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IMAGENE T: ACCURACY
Prepared by Jörg Hellwig and Thomas A. Collins

Source
Data on ImageNet accuracy was retrieved through an arXiv 
literature review. All results reported were tested on the 
LSRVC 2012 validation set, as the results on the test set, 
which are not significantly different, are not public. Their 
ordering may differ from the results reported on the LSRVC 
website, since those results were obtained on the test set. 
Dates we report correspond to the day when a paper was 
first published to arXiv, and top-1 accuracy corresponds 
to the result reported in the most recent version of each 
paper. We selected a top result at any given point in 
time from 2012 to Nov. 17, 2019. Some of the results we 
mention were submitted to LSRVC competitions over the 
years. Image classification was part of LSRVC through 
2014; in 2015, it was replaced with an object localization 
task, where results for classification were still reported but 
no longer a part of the competition, having instead been 
replaced by more difficult tasks.

For papers published in 2014 and later, we report the best 
result obtained using a single model (we did not include 
ensembles) and using single-crop testing. For the three 
earliest models (AlexNet, ZFNet, Five Base), we reported 
the results for ensembles of models.

While we report the results as described above, due 
to the diversity in models, evaluation methods, and 
accuracy metrics, there are many other ways to report 
ImageNet performance. Some possible choices include: 
• �Evaluation set: validation set (available publicly) or test 

set (available only to LSRVC organizers)
• �Performance metric: Top-1 accuracy (whether the 

correct label was the same as the first predicted label 
for each image) or top-5 accuracy (whether the correct 
label was present among the top five predicted labels 
for each image)

• �Evaluation method: single-crop or multi-crop

APPENDIX
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APPENDIX

To highlight progress here in top-5 accuracy, we have taken scores from the following papers, without extra training data:
Fixing the Train-Test Resolution Discrepancy: FixEfficientNet
Adversarial Examples Improve Image Recognition
OverFeat: Integrated Recognition, Localization and Detection Using Convolutional Networks
Local Relation Networks for Image Recognition
Densely Connected Convolutional Networks
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
Squeeze-and-Excitation Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
MultiGrain: A Unified Image Embedding for Classes and Instances
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Billion-Scale Semi-Supervised Learning for Image Classification
GPipe: Efficient Training of Giant Neural Networks Using Pipeline Parallelism
RandAugment: Practical Data Augmentation with No Separate Search
Fixing the Train-Rest Resolution Discrepancy

https://paperswithcode.com/paper/adversarial-examples-improve-image
https://paperswithcode.com/paper/overfeat-integrated-recognition-localization
https://paperswithcode.com/paper/local-relation-networks-for-image-recognition
https://paperswithcode.com/paper/densely-connected-convolutional-networks
https://paperswithcode.com/paper/revisiting-unreasonable-effectiveness-of-data
https://paperswithcode.com/paper/squeeze-and-excitation-networks
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
https://paperswithcode.com/paper/multigrain-a-unified-image-embedding-for
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
https://paperswithcode.com/paper/billion-scale-semi-supervised-learning-for
https://paperswithcode.com/paper/gpipe-efficient-training-of-giant-neural
https://paperswithcode.com/paper/randaugment-practical-data-augmentation-with
https://paperswithcode.com/paper/fixing-the-train-test-resolution-discrepancy
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To highlight progress here in top-5 accuracy, we have taken scores from the following papers, with extra training data:
Meta Pseudo Labels
Self-Training with Noisy Student Improves ImageNet Classification
Big Transfer (BiT): General Visual Representation Learning
ImageNet Classification with Deep Convolutional Neural Networks
ESPNetv2: A Light-Weight, Power Efficient, and General Purpose Convolutional Neural Network
Xception: Deep Learning with Depthwise Separable Convolutions
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Self-training with Noisy Student Improves ImageNet Classification

To highlight progress here in top-1 accuracy, we have taken scores from the following papers, without extra training data:
Fixing the Train-Test Resolution Discrepancy: FixEfficientNet 
Adversarial Examples Improve Image Recognition
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
Densely Connected Convolutional Networks
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
Dual Path Networks
Res2Net: A New Multi-Scale Backbone Architecture
Billion-Scale Semi-Supervised Learning for Image Classification
Squeeze-and-Excitation Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
MultiGrain: A Unified Image Embedding for Classes and Instances
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Billion-Scale Semi-Supervised Learning for Image Classification
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
RandAugment: Practical Data Augmentation with No Separate Search
Fixing the Train-Test Resolution Discrepancy

To highlight progress here in top-1 accuracy, we have taken scores from the following papers, without extra training data:
Meta Pseudo Labels
Sharpness-Aware Minimization for Efficiently Improving Generalization
An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale
Fixing the Train-Test Resolution Discrepancy: FixEfficientNet
Self-training with Noisy Student Improves ImageNet Classification
Big Transfer (BiT): General Visual Representation Learning
ImageNet Classification with Deep Convolutional Neural Networks
ESPNetv2: A Light-Weight, Power Efficient, and General Purpose Convolutional Neural Network
Xception: Deep Learning with Depthwise Separable Convolutions
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Self-training with Noisy Student Improves ImageNet Classification

The estimate of human-level performance is from Russakovsky et al, 2015. Learn more about the LSVRC ImageNet 
competition and the ImageNet data set. 
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https://paperswithcode.com/paper/meta-pseudo-labels
https://paperswithcode.com/paper/self-training-with-noisy-student-improves
https://paperswithcode.com/paper/large-scale-learning-of-general-visual
https://paperswithcode.com/paper/imagenet-classification-with-deep
https://paperswithcode.com/paper/espnetv2-a-light-weight-power-efficient-and
https://paperswithcode.com/paper/xception-deep-learning-with-depthwise
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
https://paperswithcode.com/paper/self-training-with-noisy-student-improves
https://paperswithcode.com/paper/fixing-the-train-test-resolution-discrepancy-2
https://paperswithcode.com/paper/adversarial-examples-improve-image
https://paperswithcode.com/paper/overfeat-integrated-recognition-localization
https://paperswithcode.com/paper/densely-connected-convolutional-networks
https://paperswithcode.com/paper/revisiting-unreasonable-effectiveness-of-data
https://paperswithcode.com/paper/dual-path-networks
https://paperswithcode.com/paper/res2net-a-new-multi-scale-backbone
https://paperswithcode.com/paper/billion-scale-semi-supervised-learning-for
https://paperswithcode.com/paper/squeeze-and-excitation-networks
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
https://paperswithcode.com/paper/multigrain-a-unified-image-embedding-for
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
https://paperswithcode.com/paper/billion-scale-semi-supervised-learning-for
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
https://paperswithcode.com/paper/randaugment-practical-data-augmentation-with
https://paperswithcode.com/paper/fixing-the-train-test-resolution-discrepancy
https://paperswithcode.com/paper/meta-pseudo-labels
https://paperswithcode.com/paper/sharpness-aware-minimization-for-efficiently-1
https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers
https://paperswithcode.com/paper/fixing-the-train-test-resolution-discrepancy-2
https://paperswithcode.com/paper/self-training-with-noisy-student-improves
https://paperswithcode.com/paper/large-scale-learning-of-general-visual
https://paperswithcode.com/paper/imagenet-classification-with-deep
https://paperswithcode.com/paper/espnetv2-a-light-weight-power-efficient-and
https://paperswithcode.com/paper/xception-deep-learning-with-depthwise
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
https://paperswithcode.com/paper/self-training-with-noisy-student-improves
https://arxiv.org/pdf/1409.0575.pdf
http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
http://image-net.org/
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IMAGENE T: TRAINING TIME
Trends can also be observed by studying research papers 
that discuss the time it takes to train ImageNet on any 
infrastructure. To gather this data, we looked at research 
papers from the past few years that tried to optimize 
for training ImageNet to a standard accuracy level while 
competing on reducing the overall training time. 

Source
The data is sourced from MLPerf. Detailed data for runs for 
specific years are available:
2020: MLPerf Training v0.7 Results
2019: MLPerf Training v0.6 Results
2018: MLPerf Training v0.5 Results

Notes
Data from MLPerf is available in cloud systems for rent. 
Available On Premise systems contain only components 
that are available for purchase. Preview systems must be 
submittable as Available In Cloud or Available on Premise 
in the next submission round. Research, Development, or 
Internal (RDI) contain experimental, in development, or 
internal-use hardware or software. Each row in the results 
table is a set of results produced by a single submitter us-
ing the same software stack and hardware platform. Each 
row contains the following information:

Submitter: the organization that submitted the results
System: general system description
Processor and count: the type and number of CPUs used, if 
CPUs perform the majority of ML compute
Accelerator and count: the type and number of accel-
erators used, if accelerators perform the majority of ML 
compute
Software: the ML framework and primary ML hardware 
library used
Benchmark results: training time to reach a specified tar-
get quality, measured in minutes
Details: link to metadata for submission
Code: link to code for submission
Notes: arbitrary notes from the submitter

IMAGENE T: TRAINING COST
Source
DAWNBench is a benchmark suite for end-to-end, 
deep-learning training and inference. Computation 
time and cost are critical resources in building deep 
models, yet many existing benchmarks focus solely on 
model accuracy. DAWNBench provides a reference set 
of common deep-learning workloads for quantifying 
training time, training cost, inference latency, and 
inference cost across different optimization strategies, 
model architectures, software frameworks, clouds, and 
hardware. More details available at DawnBench. 

Note
The DawnBench data source has been deprecated for the 
period after March 2020, and MLPerf is the most reliable 
and updated source for AI compute measurements.  

COCO: KEYPOINT DE TECTION
The data for COCO keypoint detection data is sourced from 
COCO keypoints leaderboard. 

COCO: DENSEPOSE ESTIMATION
We gathered data from the CODALab 2020 challenge and 
read arXiv repository papers to build comprehensive data 
on technical progress in this challenge. The detailed list of 
papers and sources used in our survey include: 
DensePose: Dense Human Pose Estimation In the Wild
COCO-DensePose 2018 CodaLab
Parsing R-CNN for Instance-Level Human Analysis
Capture Dense: Markerless Motion Capture Meets Dense  
   Pose Estimation
Slim DensePose: Thrifty Learning from Sparse Annotations  
   and Motion Cues
COCO-DensePose 2020 CodaLab 
Transferring Dense Pose to Proximal Animal Classes
Making DensePose Fast and Light
SimPose: Effectively Learning DensePose and Surface  
   Normals of People from Simulated Data
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https://mlperf.org/
https://mlperf.org/training-results-0-7
https://mlperf.org/training-results-0-6
https://mlperf.org/training-results-0-5
https://dawn.cs.stanford.edu
https://cocodataset.org/#keypoints-leaderboard
https://competitions.codalab.org/competitions/20660#results
https://arxiv.org/abs/1802.00434
https://competitions.codalab.org/competitions/19636#results
https://arxiv.org/abs/1811.12596
https://arxiv.org/abs/1812.01783?
https://arxiv.org/abs/1812.01783?
https://arxiv.org/abs/1906.05706
https://arxiv.org/abs/1906.05706
https://competitions.codalab.org/competitions/20660#results
https://arxiv.org/abs/2003.00080
https://arxiv.org/abs/2006.15190
http://arxiv.org/abs/2007.15506
http://arxiv.org/abs/2007.15506
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ACTIVIT YNE T: TEMPORAL 
LOCALIZATION TASK
In the challenge, there are three separate tasks, but 
they focus on the main problem of temporally localizing 
where activities happen in untrimmed videos from 
the ActivityNet benchmark. We have compiled several 
attributes for the task of temporal localization at the 
challenge over the last four rounds. Below is a link to 
the overall stats and trends for this task, as well as some 
detailed analysis (e.g., how has the performance for 
individual activity classes improved over the years? Which 
are the hardest and easiest classes now? Which classes 
have the most improvement over the years?). See the 
Performance Diagnosis (2020) tab for a detailed trends 
update. Please see ActivityNet Statisticsin the public data 
folder for more details.

YOLO (YOU ONLY LOOK ONCE)
YOLO is a neural network model mainly used for the 
detection of objects in images and in real-time videos. 
mAP (mean average precision) is a metric that is used 
to measure the accuracy of object detectors. It is a 
combination of precision and recall. mAP is the average of 
the precision and recall calculated over a document. The 
performance of YOLO has increased gradually with the 
development of new architectures and versions in past 
years. With the increase in size of model, its mean average 
precision increases as well, with a corresponding decrease 
in FPS of the video.

We conducted a detailed survey of arXiv papers and 
GitHub repository to segment progress in YOLO across 
its various versions. Below are the references for original 
sources: 

YOLOv1:  
You Only Look Once: Unified, Real-Time Object Detection  

YOLOv2:   
YOLO9000: Better, Faster, Stronger 
YOLO: Real-Time Object Detection  

YOLOv3:   
YOLOv3: An Incremental Improvement  
Learning Spatial Fusion for Single-Shot Object Detection  
GitHub: ultralytics/yolov3

YOLOv4:   
YOLOv4: Optimal Speed and Accuracy of Object Detection 
GitHub: AlexeyAB/darknet

YOLOv5:  
GitHub: ultralytics/yolov5

PP-YOLO:  
PP-YOLO: An Effective and Efficient Implementation of 
Object Detector

POLY-YOLO:   
Poly-YOLO: Higher Speed, More Precise Detection and 
Instance Segmentation for YOLOV3
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http://www.activity-net.org/
https://docs.google.com/spreadsheets/d/1yVmy433Dp9WjV-g_ZbFKSdRLrqRKKPHk61AtRKxVfW4/edit?usp=sharing
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1612.08242
https://pjreddie.com/yolo/
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1911.09516?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+arxiv%252FQSXk+%2528ExcitingAds%2521+cs+updates+on+arXiv.org%2529
https://github.com/ultralytics/yolov3
https://arxiv.org/abs/2004.10934
https://github.com/AlexeyAB/darknet
https://github.com/ultralytics/yolov5
https://arxiv.org/abs/2007.12099
https://arxiv.org/abs/2007.12099
https://arxiv.org/abs/2005.13243
https://arxiv.org/abs/2005.13243
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VISUAL QUESTION ANSWERING 
(VQA)
VQA accuracy data was provided by the VQA team. Learn 
more about VQA here. More details on VQA 2020 are 
available here.  

Methodology
Given an image and a natural language question about the 
image, the task is to provide an accurate natural language 
answer. The challenge is hosted on the VQA Challenge 
website. The challenge is hosted on EvalAI. The challenge 
link is here.

The VQA v2.0 training, validation, and test sets, containing 
more than 250,000 images and 1.1 million questions, 
are available on the download page. All questions are 
annotated with 10 concise, open-ended answers each. 
Annotations on the training and validation sets are 
publicly available.

VQA Challenge 2020 is the fifth edition of the VQA 
Challenge. Results from previous versions of the VQA 
Challenge were announced at the VQA Challenge 
Workshop in CVPR 2019, CVPR 2018, CVPR 2017, and CVPR 
2016. More details about past challenges can be found 
here: VQA Challenge 2019,  VQA Challenge 2018, VQA 
Challenge 2017, VQA Challenge 2016.  

VQA had 10 humans answer each question. More details 
about the VQA evaluation metric and human accuracy 
can be found here (see Evaluation Code section) and 
in sections three (“Answers”) and four (“Inter-Human 
Agreement”) of the paper.  

See slide 56 for the progress graph in VQA in the 2020 
Challenge. The values corresponding to the progress graph 
are available in a sheet. Here is the information about the 
teams that participated in the 2020 challenge and their 
accuracies. For more details about the teams, please refer 
to the VQA website.

PAPERS WITH CODE:  
PAPER AND CODE LINKING 
We used paperswithcode (PWC) for referencing technical 
progress where available. Learn more about PWC here and 
see the public link here. 

Methodology
For papers, we follow specific ML-related categories on 
arxiv (see [1] below for the full list) and the major ML 
conferences (NeurIPS, ICML, ICLR, etc.). For code, we 
follow GitHub repositories mentioning papers. We have 
good coverage of core ML topics but are missing some 
applications—for instance, applications of ML in medicine 
or bioinformatics, which are usually in journals behind 
paywalls. For code, the dataset is fairly unbiased (as long 
as the paper is freely available). 

For tasks (e.g., “image classification”), the dataset has 
annotated those on 1,600 state-of-the-art papers from the 
database, published in 2018 Q3. 

For state-of-the-art tables (e.g., “image classification on 
ImageNet”), the data has been scraped from different 
sources (see the full list here), and a large number focusing 
on CV and NLP were hand-annotated. A significant portion 
of our data was contributed by users, and they have added 
data based on their own preferences and interests. Arxiv 
categories we follow:
ARXIV_CATEGORIES = “cs.CV”, “cs.AI”, “cs.LG”, “cs.CL”, “cs.
NE”, “stat.ML”,”cs.IR”}

Process of Extracting Dataset at Scale
1) �Follow various paper sources (as described above) for 

new papers.
2) �Conduct a number of predefined searches on GitHub 

(e.g., for READMEs containing links to arxiv).
3) Extract GitHub links from papers.
4) Extract paper links from GitHub.
5) �Run validation tests to decide if links from 3) and 4) are 

bona fide links or false positives. 
6) �Let the community fix any errors and/or add any missing 

values.
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https://visualqa.org/people.html
https://visualqa.org/index.html
https://drive.google.com/file/d/1oypaw0uhBTRSQFtq7TqLvlvVuLWTOzwc/view
https://visualqa.org/challenge.html
http://evalai.cloudcv.org/
https://evalai.cloudcv.org/web/challenges/challenge-page/514/overview
https://visualqa.org/download.html
https://visualqa.org/challenge_2019.html
https://visualqa.org/challenge_2018.html
https://visualqa.org/challenge_2017.html
https://visualqa.org/challenge_2017.html
https://visualqa.org/vqa_v1_challenge.html
https://visualqa.org/evaluation.html
https://arxiv.org/pdf/1505.00468.pdf
https://drive.google.com/file/d/1yJISTi9PhQblI6aLgkMnojstx2frN5iY/view?usp=sharing
https://docs.google.com/spreadsheets/d/1f4VLkRG2NtrcTQXTOwZwNRw68G5BzrFP_OeZKwNJVSs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1tDl54e6db5MDnlzqod4I6Kim5-rBGlR_tMo-An8_w10/edit?usp=sharing
https://visualqa.org/roe.html
https://paperswithcode.com
https://paperswithcode.com/about
https://paperswithcode.com/sota
https://github.com/paperswithcode/sota-extractor
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NIST FRV T
Source
There are two FRVT evaluation leaderboards available here: 1:1 Verification and 1:N Identification 

Nuances about FRVT evaluation metrics
Wild Photos have some identity labeling errors as the best algorithm has a low false non-match rate (FNMR), but 
obtaining complete convergence is difficult. This task will be retired in the future. The data became public in 2018 and 
has become easier over time. Wild is coming from public web sources. So it is possible those same images have been 
scrapped from the web by developers. There is no training in the FRVT data, only test data. 

The 1:1 and 1:N should be studied separately. The differences include algorithmic approaches, particularly fast search 
algorithms are especially useful in 1:N whereas speed is not a factor in 1:1. 

SUPERGLUE 
The SuperGLUE benchmark data was pulled from the SuperGLUE leaderboard. Details about the SuperGLUE benchmark 
are in the SuperGLUE paper and SuperGLUE software toolkit. The tasks and evaluation metrics for SuperGLUE are: 
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NAME IDENTIFIER METRIC

Broad Coverage Diagnostics AX-b Matthew’s Corr

CommitmentBank CB Avg. F1 / Accuracy

Choice of Plausible Alternatives COPA Accuracy

Multi-Sentence Reading Comprehension MultiRC F1a / EM

Recognizing Textual Entailment RTE Accuracy

Words in Context WiC Accuracy

The Winograd Schema Challenge WSC Accuracy

BoolQ BoolQ Accuracy

Reading Comprehension with Commonsense Reasoning ReCoRD F1 / Accuracy

Winogender Schema Diagnostics AX-g Gender Parity / Accuracy

VISUAL COMMONSENSE REASONING (VCR)
Technical progress for VCR is taken from the VCR leaderboard. VCR has two different subtasks:
• �Question Answering (Q->A): A model is provided a question and has to pick the best answer out of four choices. Only 

one of the four is correct.
• �Answer Justification (QA->R): A model is provided a question, along with the correct answer, and it must justify it by 

picking the best rationale among four choices.

The two parts with the Q->AR metrics are combined in which a model only gets a question right if it answers correctly 
and picks the right rationale. Models are evaluated in terms of accuracy (%).

https://pages.nist.gov/frvt/html/frvt11.html
https://pages.nist.gov/frvt/html/frvt1N.html
https://super.gluebenchmark.com/leaderboard
https://arxiv.org/abs/1905.00537
https://jiant.info/
https://visualcommonsense.com/leaderboard/
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VOXCELEB
VoxCeleb is an audio-visual dataset consisting of short 
clips of human speech, extracted from interview videos 
uploaded to YouTube. VoxCeleb contains speech from 
7,000-plus speakers spanning a wide range of ethnicities, 
accents, professions, and ages—amounting to over a 
million utterances (face-tracks are captured “in the wild,” 
with background chatter, laughter, overlapping speech, 
pose variation, and different lighting conditions) recorded 
over a period of 2,000 hours (both audio and video). Each 
segment is at least three seconds long. The data contains 
an audio dataset based on celebrity voices, shorts, 
films, and conversational pieces (e.g., talk shows). The 
initial VoxCeleb 1 (100,000 utterances taken from 1,251 
celebrities on YouTube) was expanded to VoxCeleb 2 (1 
million utterances from 6,112 celebrities). 

However, in earlier years of the challenge, top-1 and top-5 
scores were also reported. For top-1 score, the system is 
correct if the target label is the class to which it assigns 
the highest probability. For top-5 score, the system is 
correct if the target label is one of the five predictions 
with the highest probabilities. In both cases, the top score 
is computed as the number of times a predicted label 
matches the target label, divided by the number of data 
points evaluated. 

The data is extracted from different years of the 
submission challenges, including: 
• �2017: VoxCeleb: A Large-Scale Speaker Identification Dataset
• �2018: VoxCeleb2: Deep Speaker Recognition
• �2019: Voxceleb: Large-Scale Speaker Verification in the Wild 
• �2020: Query ExpansionSystem for the VoxCeleb Speaker 

Recognition Challenge 2020

BOOLEAN SATISFIABILIT Y 
PROBLEM 
Analysis and text by Lars Kotthoff

Primary Source and Data Sets
The Boolean Satisfiability Problem (SAT) determines 
whether there is an assignment of values to a set of 
Boolean variables joined by logical connectives that 
makes the logical formula it represents true. SAT was the 
first problem to be proven NP-complete, and the first 
algorithms to solve it were developed in the 1960s. Many 
real-world problems, such as circuit design, automated 
theorem proving, and scheduling, can be represented and 
solved efficiently as SAT. The annual SAT competition is 
designed to present a snapshot of the state-of-the-art and 
has been running for almost 20 years. 

We took the top-ranked, median-ranked, and bottom-
ranked solvers from each of the last five years (2016-2020) 
of the SAT competition. We ran all 15 solvers on all 400 SAT 
instances from the main track of the 2020 competition. More 
information on the competition, as well as the solvers and 
instances, is available at the SAT competition website. 

Results
We ran each solver on each instance on the same 
hardware, with a time limit of 5,000 CPU seconds per 
instance, and measured the time it took a solver to solve 
an instance in CPU seconds. Ranked solvers always return 
correct results, hence we do not consider correctness 
as a metric. Except for the 2020 competition solvers, 
we evaluated the performance of the SAT solvers on a 
set of instances different from the set of instances they 
competed on. Further, our hardware is different from what 
was used for the SAT competition. The results we report 
here will therefore differ from the exact results reported for 
the respective SAT competitions.

The Shapley value is a concept from cooperative game 
theory that assigns a contribution to the total value that 
a coalition generates to each player. It quantifies how 
important each player is for the coalition and has several 
desirable properties that make the distribution of the 
total value to the individual players fair. For example, 

CHAPTER 2: 
TECHNICAL  
PERFORMANCE

APPENDIX

https://www.robots.ox.ac.uk/~vgg/data/voxceleb/
http://www.robots.ox.ac.uk/~vgg/publications/2017/Nagrani17/nagrani17.pdf
http://www.robots.ox.ac.uk/~vgg/publications/2018/Chung18a/chung18a.pdf
https://www.robots.ox.ac.uk/~vgg/publications/2019/Nagrani19/nagrani19.pdf
https://arxiv.org/pdf/2011.02882.pdf
https://arxiv.org/pdf/2011.02882.pdf
http://www.satcompetition.org/
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the Shapley value is used to distribute airport costs to its 
users, allocate funds to different marketing campaigns, 
and in machine learning, where it helps render complex 
black-box models more explainable. 

In our context, it quantifies the contribution of a solver 
to the state-of-the-art through the average performance 
improvement it provides over a set of other solvers and over 
all subsets of solvers (Fréchette et al. (2016)). For a given set 
of solvers, we choose the respective best for each instance 
to solve. By including another solver and being able to 
choose it, overall solving performance improves, with the 
difference to the original set of solvers being the marginal 
contribution of the added solver. The average marginal 
contribution to all sets of solvers is the Shapley value.

Quantifying the contribution of a solver through the 
Shapley value compares solvers from earlier competitions 
to solvers in later competitions. This is often not a fair 
comparison, as later solvers are often improved versions 
of earlier solvers, and the contribution of the solver to the 
future state-of-the-art will always be low. The temporal 
Shapley value (Kotthoff et al. (2018)) solves this problem 
by considering the time a particular solver was introduced 
when quantifying its contribution to the state-of-the-art. 

AUTOMATED THEOREM PROVING
Analysis and text by Christian Suttner, Geoff Sutcliffe, and 
Raymond Perrault

1. Motivation
Automated Theorem Proving (ATP) (also referred to 
as Automated Deduction) is a subfield of automated 
reasoning, concerned with the development and use of 
systems that automate sound reasoning: the derivation 
of conclusions that follow inevitably from facts. ATP 
systems are at the heart of many computational tasks and 
are used commercially, e.g., for integrated circuit design 
and computer program verification. ATP problems are 
typically solved by showing that a conjecture is or is not 
a logical consequence of a set of axioms. ATP problems 
are encoded in a chosen logic, and an ATP system for 

that logic is used to (attempt to) solve the problem. A 
key concern of ATP research is the development of more 
powerful systems, capable of solving more difficult 
problems within the same resource limits. In order to 
assess the merits of new techniques, sound empirical 
evaluations of ATP systems are key. 

2. Analysis
For the evaluation of ATP systems, there exists a large and 
growing collection of problems called the TPTP problem 
library. The current release v7.4.0 (released June 10, 
2020) contains 23,291 ATP problems, structured into 54 
topic domains (e.g., Set Theory, Software Verification, 
Philosophy, etc.). Orthogonally, the TPTP is divided into 
Specialist Problem Classes (SPCs), each of which contains 
problems with a specified set of logical, language, and 
syntactic characteristics (e.g. first-order logic theorems 
with some use of equality). The SPCs allow ATP system 
developers to select problems and evaluate their 
systems appropriately. Since its first release in 1993, 
many researchers have used the TPTP as an appropriate 
and convenient basis for ATP system evaluation. Over 
the years, the TPTP has also increasingly been used as 
a conduit for ATP users to contribute samples of their 
problems to ATP system developers. This exposes the 
problems to ATP system developers, who can then 
improve their systems’ performances on the problems, 
which completes a cycle to provide users with more 
effective tools.

Associated with the TPTP is the TSTP solution library, 
which maintains updated results from running all current 
versions of ATP systems (available to the maintainer) on 
all the TPTP problems. One use of the TSTP is to compute 
TPTP problem difficulty ratings: Easy problems, which are 
solved by all ATP systems, have a rating of 0.0; difficult 
problems, which are solved by some ATP systems, have 
ratings between 0.0 and 1.0; unsolved problems, which are 
not solved by any ATP system, have a rating of 1.0. Note 
that the rating for a problem is not strictly decreasing, as 
different ATP systems and versions become available for 
populating the TSTP. The history of each TPTP problem’s 
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ratings is saved with the problem, which makes it possible 
to tell when the problem was first solved by any ATP 
system (the point at which its rating dropped below 
1.0). That information has been used here to obtain an 
indication of progress in the field. 

The simplest way to measure progress takes a fixed set of 
problems that has been available (and unchanged) in the 
TPTP from some chosen initial TPTP release, and then for 
the TPTP releases from then on, counts how many of the 
problems had been solved from that release. The analysis 
reports the fraction of problems solved for each release. 
This simple approach is unambiguous, but it does not take 
into account new problems that are added to the TPTP 
after the initial release.

The analysis used here extends the “Fixed Set” analysis, 
taking into account new problems added after the initial 
release. As it is not possible to run all previously available 
ATP systems on new problems when they are added, this 
approach assumes that if a problem is unsolved by current 
ATP systems when it is added to the TPTP, then it would 
have been unsolved by previously available ATP systems. 
Under that assumption, the new problem is retrospectively 
“added” to prior TPTP releases for the analysis. If a 
problem is solved when it is added to the TPTP, it is 
ignored because it may have been solved in prior versions 
as well, and therefore should not serve as an indicator of 
progress. This analysis reports the fraction of problems 
solved for each release, but note that the fraction is with 
respect to both the number of problems actually in the 
release and also the problems retrospectively “added.” 

The growing set analysis is performed on the whole TPTP 
and on four SPCs. These were chosen because many ATP 
problems in those forms have been contributed to the 
TPTP, and correspondingly there are many ATP systems 
that can attempt them; they represent the “real world” 
demand for ATP capability.

The table here in the public data folder shows the 
breakdown of TPTP problems by content fields, as well 
as by SPCs used in the analysis. The totals are slightly 
larger than those shown in the analysis, as some 
problems were left out for technical reasons (no scores 
available, problems revised over time, etc.).
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